BAYESIAN FILTERING AND SMOOTHING

SKU: 179330
41,06€

Περιγραφή

"Filtering and smoothing methods are used to produce an accurate estimate of the state of a time-varying system based on multiple observational inputs (data). Interest in these methods has exploded in recent years, with numerous applications emerging in fields such as navigation, aerospace engineering, telecommunications and medicine. This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework. Readers learn what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages. They also discover how state-of-the-art Bayesian parameter estimation methods can be combined with state-of-the-art filtering and smoothing algorithms. The book's practical and algorithmic approach assumes only modest mathematical prerequisites. Examples include Matlab computations, and the numerous end-of-chapter exercises include computational assignments. Matlab code is available for download at www.cambridge.org/sarkka, promoting hands-on work with the methods."

Άλλες λεπτομέρειες

Author:
SIMO SARKKA
Language:
ΑΓΓΛΙΚΑ
DateIssued:
2013-09-05
Σελίδες:
252
Διαστάσεις Προϊόντος (συσκευασμένο):
228Χ152Χ12
Περιτύλιγμα Δώρου:
Διαθέσιμες επιλογές στο καλάθι
Βάρος:
419 g
Πλοήγηση
Σύνδεση

Επιλέξτε Λίστα

ΕΧΕΤΕ ΕΡΩΤΗΣΕΙΣ;

ΡΩΤΗΣΤΕ ΜΑΣ ΓΙΑ ΤΟ ΠΡΟΪΟΝ ΠΟΥ ΣΑΣ ΕΝΔΙΑΦΕΡΕΙ

Συνδεθείτε ή Δημιουργήστε λογαριασμό για την καλύτερη εξυπηρέτηση σας!

Παρακαλούμε συμπληρώστε τα πεδία της παρακάτω φόρμας

Notify Me